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Abstract

It has been shown that the use of the consistent tangent moduli is crucial for preserving the quadratic convergence
rate of the global Newton iterations in the solution of the incremental problem. In this paper, we present a general
method to formulate the consistent tangent stiffness for plasticity. The robustness and efficiency of the proposed
approach are examined by applying it to the isotropic material with J, flow plasticity and comparing the performance
and the analysis results with the original implementation in the commercial finite element program ABAQUS. The pro-
posed approach is then applied to an anisotropic porous plasticity model, the Gologanu-Leblond-Devaux model. Per-
formance comparison between the consistent tangent stiffness and the conventional continuum tangent stiffness
demonstrates significant improvement in convergence characteristics of the overall Newton iterations caused by using
the consistent tangent matrix.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Most previous research on computational plasticity has been focused on isotropic materials. Significant
progresses have been made in development of algorithms to integrate the elastoplastic constitutive
equations for J, flow plasticity and other material models where the flow potential can be expressed as a
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function of the stress invariants. The integration algorithm enables one to treat the elastoplastic problem
over a typical time step as an equivalent elastic problem. Thus choice of the integration scheme is important
for the accuracy and stability of the solution. Ortiz and PoPov (1985) carried out a systematic investigation
of the accuracy and stability of the generalized trapezoidal and midpoint rules. Their studies show that for
strain increments, which are several times of the size of the yield surface in strain space, the backward Euler
method provides a stable and accurate integration algorithm. For the implicit finite element method, the
equilibrium equations are written at the end of each increment. If a full Newton—Raphson scheme is used
to solve these non-linear equations, the so-called ‘tangent moduli’ are needed. Simo and Taylor (1985)
showed that the consistency between the tangent (stiffness) operator and the integration algorithm em-
ployed in the solution of incremental problem plays a crucial role in the preserving the quadratic conver-
gence rate of the global Newton iterations. They derived a tangent stiffness matrix for the J, material that is
fully consistent with the backward Euler integration algorithm. Aravas (1987), Lee and Zhang (1991),
Zhang (1995) and Muhlich and Brocks (2003) conducted detailed studies of the backward Euler method
for numerical integration of a class of pressure-dependent plasticity laws and obtained the tangent moduli
by consistent linearization of the elastoplastic constitutive equations.

In recent years, the finite element method has been successfully applied to develop mechanism-based
approaches for predicting failure of ductile materials. The most widely used continuum damage model
for analyzing ductile fracture phenomena is due to Gurson (1977) with the modification by Tvergaard
(1982). The Gurson—Tvergaard (GT) model is an example of the class of pressure-dependent plasticity laws
considered by Aravas (1987) and Lee and Zhang (1991), which provides a constitutive relation for ductile
solids containing spherical voids. The flow potential of the GT model depends on the first and second stress
invariants as well as an additional internal variable, the void volume fraction. When the void volume frac-
tion becomes zero, the GT model reduces to the J, flow plasticity. Computational approaches based on the
GT model have successfully predicted the behavior of ductile crack growth under a variety of conditions,
e.g., Needleman and Tvergaard (1987), Xia et al. (1995), Ruggieri et al. (1998), and Gao et al. (1998a,b).
However, a distinct limitation of the GT model is the assumption that voids are spherical in materials.
But many processed materials, such as rolled plates, have non-spherical voids. And even for materials hav-
ing initially spherical voids, the voids will change to prolate or oblate shape after deformation, depending
on the state of the applied stress. In order to overcome the limitations of the GT model, Gologanu et al.
(1993, 1994, 1995) derived a yield function for materials containing spheroidal voids. During plastic defor-
mation, both the volume fraction and the shape of voids evolve as deformation increases. Since non-spher-
ical voids are considered in the constitutive model, preferred material orientation exists and the plastic
behavior becomes anisotropic. Unlike the isotropic materials, which have no preferred material orienta-
tions so that the yield functions can be described by the stress invariants, the Gologanu-Leblond-Devaux
(GLD) material has preferred orientation and exhibits anisotropic plastic behavior. Consequently the yield
function of the GLD model is expressed in a complicated form in terms of the stress components. Recently
Pardoen and Hutchinson (2000, 2003) implemented the GLD model in the finite element analysis and their
results show that the computational approach based on the GLD model provides a promising tool to sim-
ulate the ductile fracture process and to predict failure of engineering structures. Due to the complexity of
the constitutive equations of the GLD model, they adopted the conventional continuum tangent stiffness in
their finite element implementation. Such a procedure, however, results in loss of the quadratic rate of
asymptotic convergence particularly important for large time steps. Fracture analysis often deals with large
finite element models and requires efficient numerical algorithms. It is necessary to adopt the backward
Euler method and derive the corresponding consistent tangent stiffness for the GLD model.

Derivation of the consistent tangent moduli becomes difficult when the constitutive equations have com-
plicated forms. In this paper, we present a generalized approach to formulate the consistent tangent stiffness
for plasticity. The derivation will be based on small-strain formulation. For finite strain plasticity, kine-
matic transformations are performed first so that the constitutive equations governing finite deformation
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are formulated using strains—stresses and their rates defined on an unrotated frame of reference. Once the
kinematic transformations have eliminated rotation effects on rates of the tensorial quantities, the
stress updating procedure and the consistent tangent stiffness formulation remain the same as those for
small-strain formulation. This treatment of the finite strain plasticity is adopted by several research and
commercial finite element programs, e.g., ABAQUS. In this case, only small-strain formulation needs to
be considered in development of a user material subroutine. In Section 2 we summarize the general
approach to formulate the consistent tangent moduli for plasticity. The method developed in Section 2
is first applied to develop the consistent tangent stiffness for the isotropic materials with J, flow plasticity
and the algorithm is implemented to ABAQUS via a user subroutine. The robustness and efficiency of the
proposed approach are examined by comparing the performance and the analysis results with the original
implementation in ABAQUS. Finally the GLD model is implemented using the proposed approach. The
performance comparison between the consistent tangent stiffness and the conventional continuum tangent
stiffness demonstrates the significant improvement in convergence characteristics of the overall Newton
iterations caused by using the consistent tangent matrix.

2. The general method to formulate the consistent tangent matrix

In this section, a general approach to formulate the tangent moduli for plasticity, consistent with the
backward Euler algorithm for the solution of the incremental problem, is presented. The algorithm is based
on small-strain formulation.

2.1. The constitutive equations

Usually a yield function, a flow rule and a set of evolution equations for N state variables are needed to
describe the constitutive relations of a plastic material. The yield function, @, for an anisotropic material
can be expressed as the following general form:

®(0;,H,) =0, a=1,...,N. (1)
Here o;; are the stress components and H, represents a set of state variables. The subscript o is introduced to

indicate that there may be several state variables including the hardening parameters. When the material
deforms plastically, the inelastic part of the deformation is defined by the flow rule

0g
60’[]’

def; = 4 (2)
where g = g(a;;, H,) is the plastic potential, de], are the differential of the plastic strain components and 7 is
a positive scalar. In this study, we consider the “associated flow’ plasticity model, i.e., ® = g. Finally, evo-
lution of the N state variables can be described by

dH, = h,(de},, 0:5,Hp), a=1,...,N; p=1,...,N. (3)

ijs
For complex plasticity models, several evolution equations may be defined and the forms of these equations
can be very complicated. Egs. (1)—(3) define the constitutive model for the plastic material.

2.2. Numerical integration of the plasticity model
The backward Euler method has proven to be stable and accurate for the numerical integration of the

elastoplastic constitutive relations and it is especially efficient when large step size is taken. This makes
it especially attractive when dealing with porous materials. Since the deformation in porous materials is
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usually very large, one has to take large strain increments. Because the focus of this study is to develop the
consistent tangent stiffness matrix, numerical integration of the rate constitutive equations will be described
very briefly here. Detailed discussions about the backward Euler method can be found in Aravas (1987).

For the strain driven integration algorithm, which is commonly adopted in the finite element analysis,
the total strain increment is known for the new increment. During the constitutive calculations, the stresses
and state variables are known at the start of each increment and their values need to be updated at the end
of the increment corresponding to the total strain increment. The elasticity equations give

(aij)HAt = Mijkl(sz/)t+At = Mijkl{(SZ[)t + Agyy — Aﬁ}?;} = GE,- — M juAgy,, (4)
where
O';l; = M,-jkl{(eled)t + Ask]} (5)

is the elastic predictor, ¢ represents the time at the start of the increment, ¢ + Atz represents the time at the
end of the increment, and the superscripts ¢ and p denote elastic and plastic components respectively. The
total strain increment Agy; is known, and if the linear elastic behavior is isotropic, the elastic moduli M,
can be expressed as

2
My = G(0y0j + 0udj) + (K - 3G) 0ij0u, (6)

where G and K are the elastic shear and bulk moduli respectively, and d;; is the Kronecker delta. In Eqgs. (4)
and (5) and hereafter, the summation convention is used for Latin and Greek indices unless otherwise
indicated.

Substituting Eq. (2) into Eq. (4) leads to

0P t+At
A a
(o) =~ () )

Egs. (1), (3) and (7) consist of N + 7 independent equations and have N + 7 unknowns, i.e., six stress com-
ponents, N state variables and 4. The non-linear equations can be solved iteratively by using the Newton—
Raphson method.

2.3. The consistent tangent stiffness matrix

In the implicit finite element method, the equilibrium equations are written at the end of the increment,
resulting a set of non-linear equations for the nodal unknowns. If a full Newton scheme is used to solve
these non-linear equations, one needs to calculate the linearization moduli

60} t+At
Jijp = ( j) . (8)

askl

Simo and Taylor (1985) showed that use of the consistent tangent moduli significantly improves the con-
vergence characteristics of the overall equilibrium iterations. The so-called elastoplastic tangent derived
from the “continuum” rate equations by enforcement of the consistency condition will destroy the qua-
dratic convergence of the Newton—-Raphson method. The consistent tangent stiffness corresponding to
the backward Euler integration can be obtained by linearization of Eq. (4). Since all quantities in calculat-
ing Jj; are referred to time ¢ + Az, the superscript ¢ + Az will be dropped hereafter.

Conventionally the consistent tangent stiffness matrix is obtained as follows. First, Eq. (4) can be rewrit-
ten as
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i = Mgy, = M (e — ey) = Myu{eu — (e5)" — Aehy }. 9)
Next, substitute Eq. (2) into Eq. (9) and differentiate the resulting equation
o o'
@ i':Mi' @ _a)\.M, —_"Mi' —a mn - 10
Tij ikl Okl [kl don AM jjir 004,00, a ( )

To obtain the tangent stiffness, 04 needs to be evaluated. However, evaluation of 04 becomes difficult when
the derivatives of state variables (0/H,) have complex forms in terms of d¢; and Og;. For this reason, we
choose another way to derive the consistent tangent stiffness.

By directly differentiating Eq. (9), we can get

00,j = M ;06 — M ;0. .

From the above equation, if we can find the relations between 0cj; and 0a;; (or Oe;), the consistent tangent
stiffness matrix can be achieved. From Eq. (3) we can obtain

oh, oh, o
= Cy| =00, b 12
aH[f Cz[f (ao_ij ao-[j + a(ASS) a(Aglj)> ) ( )
where C,p is defined as
- Oh,
Cop = Oup — o, (13)

To find the relations between 0¢], and Oo;;, we start by taking the differentiation of the yield function

oo oo
d anj 6/ + aHﬁ B 0 ( )
Substituting Eq. (12) into Eq. (14) gives
oo od 0on, od Oh, o
do ao—ij aO',/ + Cot/f aH,; aO'[j 60,, + Cocﬁ 61’1/; G(A.eg) ( 81/) ( )
or
oo 0Oh, b o od on,
; Py _ _ C, . 16
4 6H,; 6(A85) ( 8’/) (@aij + b aHﬁ 60,«j> %y ( )

This gives only one equation. In order to find the relationships between the increments of stress components
and the increments of the plastic strain components, eight more equations are needed.

Aravas (1987) introduced two scalar strain variables
0P
Ag, = —ia—¢,Asq =A—
op Jq

with p and ¢ representing the hydrostatic stress and the equivalent stress, respectively. Eliminating A results

m
od oo
A8p<aq>+ 8"(@?) 0

The two scalar strain variables introduced by Aravas have also adopted by several other authors, e.g., Lee
and Zhang (1991), Zhang (1995) and Muhlich and Brocks (2003), for numerical integration of a class of
pressure-dependent plasticity laws.
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The same concept is employed here. The eight remaining equations needed to determine the relationships
between the increments of stress components and the increments of the plastic strain components can be
obtained by rearranging Eq. (2) as

p p p p p p
Agj, Ae3, Aes, Ag}, Ag5, Aes,

w) (20) () (22) (22) (e
@) @) @) @) @) @)
If one of the non-zero components of d9/da;; is chosen as reference, one can obtain eight independent equa-

tions from (17). Here we assume that 0®/0a,, # 0 and the eight equations resulted from Eq. (17) are as
follows:

0P 0P
po=(— A, — (— A&, =0
! (60’22) n <60’1|> n ’

oo oo
e (2208, - (2)an o
60'22 6621 ( 18)

0 0P
= (=— A& — ([— ) A&, = 0.
lPS <60'22> 833 <6033> 822 0

By differentiating equation ¥; we can get

o o’d R o
P, = [ — |0(A) + A y He) — [ 22 ) oA
d ! <6622>a( 8”) + n (aGQZaGU 60',] + 60'226[‘1/;6 ﬁ> (6011>a( 822)

R R
AL —— Qo+ ——— OH
822(60’]160’,]601]+66116H/;a ﬂ)

= 0. (19)

= (17)

Substituting Eq. (12) into Eq. (19) and rearranging the terms result in

9 Vaad) - (22 )o(ad L PO FO N O,
<6622> oAst) (6611> O(Aen) + Cup (Aéll 00»0H g Aoz 00110H a(AeE) a(Abij)
GZQ) 62¢ 62¢ az(p ahﬁ
=42 — A (A — A O T 20
< & 301,00, &n d0 00, +C .ﬁ( &y d01,0H, &1 a@g@H;g) ao'ij> 0y (20)

Similarly, we can obtain the remaining seven equations by differentiating equations ¥,—%g. Combining the
eight equations obtained above and Eq. (16), the relationships between ¢}, and Ooj; can be determined and
therefore the consistent tangent stiffness can be derived from Eq. (11).

For the convenience of the finite element implementation, we will derive the consistent tangent stiffness
in matrix form. The boldface symbols will be used to denote vectors and matrices. The following matrix
products will be used in the equations:

(Ad), = 4yd;,
(AB)U’ = AuBy;.
The nine equations between Ogj; and dg;; obtained above can be summarized as
Ko(Ae?) = D0, (21)



J. Kim, X. Gao | International Journal of Solids and Structures 42 (2005) 103-122 109

where AeP = {Ae]|, Ad), AdS, . .., As§’3}T, 6 ={011,001,031,...,05} , K is the coefficient matrix of d(A&P)
and D is the coefficient matrix of 0e. Construction of the K and D matrices are demonstrated in Section 3.
From Egs. (21) and (11) we can obtain

0(AeP) = (K + DM) 'DM(0), (22)
where M is a 9 x 9 matrix representing the elasticity tensor M, Substituting Eq. (22) into Eq. (11) leads to
36 = <M ~ M(K + DM)"DM) (3e). (23)

Therefore, the consistent tangent stiffness matrix corresponding to the backward Euler integration scheme
can be obtained as

ac t+At
J— (a_g> —M - M(K + DM) 'DM. (24)

Several comments can be made about the consistent tangent stiffness matrix derived above. (1) The pro-
cedure for deriving the consistent tangent stiffness is general and can be applied to formulate the consistent
tangent stiffness matrix for plasticity models which can be described by Egs. (1)—(3). (2) The J matrix is
usually non-symmetric. It becomes symmetric when the material obeys the J, plasticity theory (Section
3). But for other plasticity models, e.g., the GLD model (see Section 4), J can be non-symmetric. If the
deformation of the material is small, the non-symmetric contributions are insignificant compared to the
symmetric contributions and a symmetric linear solver can be used to solve the structural equations. How-
ever, when the deformation becomes large, a non-symmetric solver should be used. (3) A matrix inversion
operation is required to obtain the J matrix. For very large deformations, the matrix K + DM could be-
come ill-conditioned. Therefore, a robust and efficient numerical algorithm for matrix inversion should
be employed. (4) The J matrix is derived based on all nine components of the stress and strain increments
in this paper. In the actual implementation, reduced 6 x 6 matrices of M, K, D can be considered resulting a
6 x 6 J matrix because of the symmetries of the Cauchy stress and infinitesimal strain tensors. This reduces
the computation time. (5) Evaluation of the J matrix becomes straightforward after matrices K and D are
established. Calculation of the K and D matrices requires evaluation of the following derivatives

w w0 To Fo o on on
aaij7aHﬁ760[j66k1 760’,‘j8H{;’66[j’6(A8§») 7a[‘[ﬁ '

(25)

3. Application to the J, plasticity model

To assess the algorithm developed in Section 2, we apply it to the J, plasticity model with isotropic hard-
ening and compare it with the algorithm employed by ABAQUS.

3.1. Constitutive equations for J, plasticity

The yield function for J, plasticity can be expressed as
bd=0,—6=0 (26)

where 0. = +/(3/2)S;;S;; is the equivalent stress, Sj; is the stress deviator and ¢ is the current yield stress of
the material. An evolution equation can be formulated using equivalent plastic work expression as

GAT = 0,A¢), (27)
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where AP is the equivalent plastic strain. If the variation of the yield stress with respect to the equivalent
plastic strain is defined by the hardening function as

- Acg
h=—. 28
AeP (28)
Eq. (27) can be rewritten as
ilG[jASl;-
o (29)

Eq. (29) has the same form as Eq. (3). Egs. (26), (2) and (29) provide the constitutive equations for the J,
flow plasticity theory.

3.2. Consistent tangent matrix for J, plasticity
Since the J, plasticity model has only one evolution equation, i.e., « = 1 and H; = & , an explicit form of
Eq. (12) can be obtained as
hG AP, héo

06 = Y 3a;; ihid. | O(AR). 30
’ 62 + hop, Aehy %y +62+hamnA65n (A<) (30)

By taking the differentiation of Eq. (26), we can get

38
do =3 gfaafaaf (31)
Substituting Eq. (30) into Eq. (31) leads to
hoa,, 3S; hG A&,
! o(AL) = ————— Y )00, 32
G2 + hO'mnAsll:m ( blj) (2 Oe o’ + hamnAggm 7 ( )

The remaining eight equations for determination of the relationships between 0¢j; and 0c; are as follows:

6@5 6@ 62 62@
A} A Ad — AL —— Voo,
<6622)6( i) (6‘711)6( ) = ( 236,00, 001100 e Gozz@mj) 00,

0P 0P 62<D 0’
— |0(A&D)) — A Ad — AL —— Voo,
(6622)6( &) (6021>6( &) = ( A A 302100, &1 60_22@0”)601/7 (33)

0P 0P 0’ 0’
(A (A Aéd — A&y, —— ) do0;;.
<6022> (Aes;) — (60;3> (A&h,) = < A A 303300, €33 aagzaai,») 0Oij

Here for the illustration purpose, it is assumed that 0®/0g,, # 0 and the 22-component is used as reference
to formulate the eight equations in Eq. (33). In the actual implementation, the reference component is cho-
sen based on the value of 0®/0a;;. The ij-component will be chosen as the reference component if ¢/ ;; is
maximum at the integration point.

For the J, plasticity model

0w 35,
aoij_2 O,
2
P ijYmn ij o mn
d 3 (5_ 5, O )_gsjs

aGl’jao-nm - 2_0-6 3 4 0'2

(34)
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and the K matrix in Eq. (21) can be obtained as
[k1S» 0 0 0 —kSu O
0 KkS» O 0 —kSy O
0 0 hkSn 0 —kSu 0
0 0 0 KkS»n —kSn 0 0 0 0

oS O O
S O O
oS O O

kyon  kaon kaoz kaoin koo kaon ko1 kaoxy koo | (35)
0 0 0 0 —k1S32  ki1Sx» 0 0 0
0 0 0 0 —k1S13 0 k1S 0 0
0 0 0 0 —k1S23 0 0 k1S» 0
L0 0 0 0 —kS; 0 0 0 kiSy |
where
= % Ty iz];jm.Asfm ' o

The fifth row of the K matrix corresponds to Eq. (32) and the rest eight rows correspond to the equations
given by Eq. (33). This arrangement ensures the diagonal elements of the K matrix to be non-zero. The D
matrix can be constructed in a similar way.

It is noted that the coefficients of Eq. (32) often have much larger values than the coefficients of Eq. (33).
To improve the conditions of the K and D matrices, a scaling factor is multiplied to both sides of (32), i.e.,
the elements in the fifth row of the K and D matrices are reduced by the same scaling factor. After the K and
D matrices are established, the consistent tangent stiffness matrix J can be easily obtained.

We have implemented above procedure to ABAQUS via a user subroutine. We tested the algorithm by
analyzing a cubic block containing a spherical hole at its center as shown in Fig. 1(a). This kind of model is
often used in micromechanics study of the void growth behavior in ductile solids. Displacement boundary
conditions are prescribed on the outer surfaces of the cube. The displacement components are specified on
the faces of the block incrementally using the procedure developed by Faleskog et al. (1998) such that the
macroscopic stress ratios remain constant during the loading history. Due to symmetry, a one-eighth sym-
metric model is employed, which contains 384 28-node, isoparametric, brick elements with reduced integra-
tion. Fig. 1(b) shows the deformed shape of the model. From this analysis, we found that the consistent

Fig. 1. (a) The one-eighth symmetric finite element mesh of a cube containing a centered spherical hole and (b) the deformed shape.
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tangent stiffness matrices computed using our user subroutine are exactly the same as those computed using
the algorithm originally implemented in ABAQUS during the entire loading history, which verifies our pro-
posed method. The algorithm developed in this paper requires inverting the matrix K + DM, and therefore
takes more CPU time. However, our numerical tests show that this increase of the CPU time is insignifi-
cant—it is less than 10%.

In ABAQUS the consistent tangent moduli for J, plasticity is derived following the conventional algo-
rithm which requires evaluation of 94. As discussed in Section 2, it is difficult to extend this approach to
plasticity models with 0H, having complex forms in terms of d5;; and e;. Our new approach provides a
simple and efficient algorithm to formulate consistent tangent moduli for complex plasticity models.

4. Application to the GLD porous plasticity model

In this section, the algorithm developed in Section 2 is applied to derive the consistent tangent moduli for
an anisotropic porous plasticity model, the GLD model, which demonstrates the effectiveness of the pro-
posed algorithm in handling complex plasticity models.

4.1. Constitutive equations of the GLD plasticity model

The GLD porous plasticity model (Gologanu et al., 1993, 1994, 1995) provides the constitutive equa-
tions for development of the mechanism-based approaches to predict structure failure by ductile fracture
(Pardoen and Hutchinson, 2000, 2003). The GLD model describes the macroscopic plastic response of
ductile solids containing spheroidal voids. Because the void shape is not spherically symmetric, preferred
orientations exist in the material and the plastic behavior becomes anisotropic.

Consequently, the yield function cannot be described by the stress invariants. Instead, the yield function
has a complicated form involving the stress components.

Fig. 2 shows the geometrical representation of a representative material volume containing a spheroidal
void (axisymmetric): (a) prolate void and (b) oblate void. The void is axisymmetric about the y-axis and the
aspect ratio is W = R,1/R.;. The yield function of the void-containing material can be expressed as

& = S+ amXI + 2q(e + (e + f)eosh (x22) — (g4 1) = e+ =0, 37)

ya Re Yy

<y
=y

Fig. 2. Geometrical representation of a representative material volume: (a) prolate void shape and (b) oblate void shape.
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where X; are the macroscopic stress components, f represents the void volume fraction, S is the shape
parameter defined as S =In(W) , and ¢ is the yield stress of the matrix material. In Eq. (37), || || denotes
the von Mises norm, X’ is the deviatoric stress tensor, X, is the generalized hydrostatic stress defined by
Yp=0(Zyt+ 20+ (1 — o)), X is a tensor defined as X =(2/3)e, ® e, — (1/3)e, @ e, — (1/3)e. ® e,
where (ey, ey, e.) is an orthogonal basis with e, parallel to the axisymmetric axis of the void, and ®denotes
tensor product. The parameters C, 5, g, k and o, as described in Appendix A, are functions of f'and S, and
the heuristic parameter ¢ depends on initial void volume fraction, strain hardening exponent of the matrix
material, S and the macroscopic stress triaxiality factor 7. Detailed descriptions about the GLD model can
be found in Pardoen and Hutchinson (2000, 2003) and Gologanu et al. (2001).

In the GLD model, it is assume that the macroscopic plastic strain increments (AEf-’j) follow the flow rule
expressed as

0P

AEY =)
v aZU

(38)

Three evolution equations corresponding to state variables f, ¢, and S are needed in the GLD model.
From the plastic incompressibility of the matrix material, the change of the void volume fraction due to
void growth can be expressed as

df = (1 - f)dE,. (39)

Enforcing equality between the rates of macroscopic and matrix plastic work allows for computation of
¢ using the effective stress—strain curve for the matrix material
GdeP (1 — f) = Z,dEY. (40)
The evolution equation for void shape can be expressed as (Gologanu et al., 1993, 1994)
dS = (3/2)&dETX ; + &HdER,, (41)

where &; and &, are described in Appendix A.
The three evolution equations can be expressed in the form of Eq. (3) as

Af =h = (1 - f)AE},, (42a)
) hx,dE,

AG = hz = m, (42b)

AS = hy = (3/2)EAE}X ;; + &AEY, (42¢)

The rotation of the principal axis of the void is not considered here.

4.2. Consistent tangent stiffness matrix

The backward Euler method provides an accurate and stable algorithm for the numerical integration of
the GLD model. But due to the complexity of the constitutive equations, it is not easy to derive the con-
sistent tangent stiffness following the procedure by Simo and Taylor (1985). Here we use the general ap-
proach presented in Section 2 to formulate the consistent tangent stiffness matrix. The matrices K and D

are needed to evaluate the consistent tangent matrix J. To obtain these matrices, the following derivatives
P D 0P P %0 o) PP Xd Ohy Oy Oy g s
0z Of * Go0 O Ax;oxg G070 0x,0a0 0X,080 08Xy’ o(AE,)’ o 0 T 3>
These derivatives are given in Appendix B.

where o =1,2,3.

are required:
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It is worthwhile to mention that the consistent tangent stiffness matrix J derived for the GLD model is
non-symmetric. Therefore, a non-symmetric solver should be used for solving the structural equations,
especially when deformation in the material becomes large.

4.3. Numerical tests

The numerical procedure described above has been implemented in ABAQUS via a user subroutine and
tested by performing analyses of several test problems.

4.3.1. Round tensile bar

The first numerical test is conducted by analyzing necking of a round tensile bar. The 1/8-symmetric fi-
nite element mesh shown in Fig. 3(a) consists of 1122 eight-node, 3D linear brick elements hybrid with con-
stant pressure (C3D8H in the element library of ABAQUS). A geometric imperfection is used to initiate
necking at the middle of the specimen, R /Ry = 0.995, where R, is the initial radius of the bar and Ry is
the radius of the mid-section. The ratio of the initial length (Lg) to the initial diameter of the round bar
is 4.0. Displacement boundary conditions are applied at the end of the specimen. The total axial displace-
ment (u, = 0.25L,) is applied incrementally. The matrix material is characterized by a power-law hardening
stress—strain relation with E/oy =207, v = 0.3, and N = 0.12, where E is the Young’s modulus, g is the ini-
tial yield stress, v is the Poisson’s ratio and N is the strain-hardening exponent. The GLD model is used to
describe the macroscopic plastic behavior of the material. In the first case, the voids are assumed to have
a prolate shape (/W =4) initially and in the second case, the initial void shape is assumed to be oblate
(W =1/4). The initial void volume fraction for both cases is taken to be f, = 0.01.

Fig. 3(b) is the deformed shape of the tensile bar containing prolate voids showing necking occurs at the
mid-section. Fig. 4 compares the engineering stress—strain curves for the two cases. Here F represents the
axial load carried by the bar. The maximum load is reached at a strain value of about 0.13 (engineering
strain &, = u,/Lo). The load—elongation behavior of the bar is almost the same for both cases. The specimen
containing prolate voids has a little higher ultimate strength than the specimen containing oblate voids.
This kind of behavior agrees with the experimental observations by Benzerga (2000). Fig. 5 compares
the radial displacements (u,) at the mid-section of the specimen and that at the end-section of the specimen
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Fig. 3. (a) The 1/8-symmetric finite element mesh for analyzing necking of a round tensile bar and (b) deformed shape at u, = 0.25L,.
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Fig. 4. Comparison of the predicted engineering stress—strain curves for specimens having prolate and oblate voids.
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Comparison of the radial contraction at the mid-section and that at the end-section of the specimen containing prolate voids.

for the prolate void case. Before u,/L reaches 0.13, uniform elongation occurs in the specimen. After u,/L
reaches 0.13, the radial displacement increases rapidly around the center-length area (mid-section) of the
specimen but stops changing away from the mid-section. This indicates necking of the specimen.

To demonstrate the effectiveness of the consistent tangent stiffness, the same analysis is conducted using
the conventional continuum tangent moduli derived from the “continuum” rate equations by enforcement
of the consistency condition. Derivation of the continuum tangent stiffness for the GLD model is straight-
forward (Pardoen, 2003) and the result is given in Appendix C. Fig. 6 compares the number of iterations
needed to apply the same displacement increment using the consistent tangent stiffness matrix and using the
continuum tangent stiffness matrix in the finite element analysis. When the deformation is small, using the
consistent tangent stiffness does not lead to a noticeable reduction of the number of iterations. However,
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Fig. 6. Comparison of the number of iterations needed to apply the same displacement increment using the consistent tangent stiffness
matrix and using the continuum tangent stiffness matrix.
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Fig. 7. Comparison of the void growth behavior of the prolate voids and the oblate voids at the center of the specimen: (a) change of
void volume fraction and (b) change of void shape.

when the deformation becomes large, the advantage of using the consistent tangent stiffness is obvious. It
significantly reduces the number of iterations needed to apply the same amount of displacement increment.

Although the overall load—elongation curves for the specimen containing prolate voids and the specimen
containing oblate are almost the same, the void growth behavior in the two specimens is quite different. Fig.
7(a) compares the void growth rate at the center of the specimen for both cases. The oblate voids grow
much faster than the prolate voids. Fig. 7(b) shows how the void aspect ratio evolves as the deformation
increases. Since the load is applied in the axial direction, the initially oblate voids will change to prolate
voids when ¢, ~ 0.20.

4.3.2. Non-uniform deformation

For the cubic material volume containing a hole considered in Section 3, the material near the hole expe-
riences much larger deformation than the material away from the hole. To demonstrate the robustness of
the consistent tangent stiffness derived for the GLD model, the finite element model shown in Fig. 1 is
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Fig. 8. (a) Deformed shape of the model and (b) comparison of the predicted variation of the lateral displacement vs. the vertical
displacement curves between the J, material and the GLD material.

reconsidered, where length of the half-edge L. The boundary conditions are described in Section 3.2. Here
it is assumed that the material behavior is governed by the GLD model with f, = 0.001 and W = 2. Fig. 8(a)
shows the deformed shape of block, where the element around the hole experience very large deformation.
Fig. 8(b) shows the variation of the lateral displacement (u,) of the face perpendicular to the x-axis with the
vertical displacement (u,) of the top face. At the beginning, the block contracts laterally as the vertical dis-
placement increases. The predicted u, vs. u, curves are almost the same using the J, plasticity model and
using the GLD model. But for the GLD material, when u,/L, reaches about 0.95, the lateral displacement
stops changing, suggesting plastic flow localization in the ligament and onset of internal necking. This
example shows that the consistent tangent stiffness derived using the proposed method has no problem
dealing with non-uniform deformation and very large deformation.

5. Conclusion

In this paper, we present a general method to formulate the consistent tangent stiffness matrix for plas-
ticity. The robustness and efficiency of the proposed approach are examined by applying it to the isotropic
material with J, flow plasticity and comparing the performance and the analysis results with the original
implementation in ABAQUS. The proposed approach is then applied to an anisotropic porous plasticity
model. The performance comparison between the consistent tangent stiffness and the conventional contin-
uum tangent stiffness demonstrates the significant improvement in convergence characteristics of the overall
Newton iterations caused by using the consistent tangent matrix. Since all the stress components are used as
calculation variables in the derivation of tangent stiffness matrix, the proposed method provides a general
approach to formulate the consistent tangent moduli for the any plastic constitutive models given by Egs.
(1)—(3). The advantage of the proposed method becomes effective when complex plasticity models are dealt
with.
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Appendix A

The GLD model is derived from a material volume of spheroidal shape containing a confocal spheroidal
void (Fig. 2). The void can be either prolate (will be referred to by the symbol “P’’) or oblate (will

be referred to by the symbol “O”). Because of confocality, there exists a relationship /|R% —Ril\ =
\/|R:y — Ry,| = ¢, where ¢ is the focal distance. The eccentricities of the inner and outer spheroidal shapes
are ey =c¢/R,1 (P) or ¢/Ry (O), e2=c/Ry» (P) or ¢/R,, (O). These eccentricities are related to f and

S by

0 (P),
g=4 4
= (0),
2
B _ a 1y [ a2V (
1 ﬂ+ln<f>{(‘/§ 2)In (l) s <3+eg+z\/m +In
| —]
e ()
3 In(g,/g1) 2Of T gf Sl T gl
1+e%
3+e‘;‘ (P)’
= (-2
- _Ket1(g+/f)sh
n(Q+nH)
where

sh = sinh(kH), ch=cosh(kH), H=2(0; — o), O=1-f,

1 1—¢2 1
77 — —5tanh™ (e) (P),

26% Zef
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(A.2)

(A3)
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The &; and &, are given by

B 9. oy — o
G=1+380 -V (A8)
1—
=173 g (A.9)
S
where
1
T (A.10)
[ 1-¢2 :
3—65 (O)’
1
¢r=1-05T, (A.11)
(22 +2)
e it S b A A.12
32, — 2 (A.12)
Appendix B

Derivatives needed to formulate the consistent tangent stiffness for the GLD porous plasticity model

o 3C (., 0% ozl a5, .,
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Appendix C

The conventional continuum tangent stiffness matrix for the GLD model

0P 0D
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