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Abstract

It has been shown that the use of the consistent tangent moduli is crucial for preserving the quadratic convergence
rate of the global Newton iterations in the solution of the incremental problem. In this paper, we present a general
method to formulate the consistent tangent stiffness for plasticity. The robustness and efficiency of the proposed
approach are examined by applying it to the isotropic material with J2 flow plasticity and comparing the performance
and the analysis results with the original implementation in the commercial finite element program ABAQUS. The pro-
posed approach is then applied to an anisotropic porous plasticity model, the Gologanu–Leblond–Devaux model. Per-
formance comparison between the consistent tangent stiffness and the conventional continuum tangent stiffness
demonstrates significant improvement in convergence characteristics of the overall Newton iterations caused by using
the consistent tangent matrix.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Most previous research on computational plasticity has been focused on isotropic materials. Significant
progresses have been made in development of algorithms to integrate the elastoplastic constitutive
equations for J2 flow plasticity and other material models where the flow potential can be expressed as a
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function of the stress invariants. The integration algorithm enables one to treat the elastoplastic problem
over a typical time step as an equivalent elastic problem. Thus choice of the integration scheme is important
for the accuracy and stability of the solution. Ortiz and PoPov (1985) carried out a systematic investigation
of the accuracy and stability of the generalized trapezoidal and midpoint rules. Their studies show that for
strain increments, which are several times of the size of the yield surface in strain space, the backward Euler
method provides a stable and accurate integration algorithm. For the implicit finite element method, the
equilibrium equations are written at the end of each increment. If a full Newton–Raphson scheme is used
to solve these non-linear equations, the so-called �tangent moduli� are needed. Simo and Taylor (1985)
showed that the consistency between the tangent (stiffness) operator and the integration algorithm em-
ployed in the solution of incremental problem plays a crucial role in the preserving the quadratic conver-
gence rate of the global Newton iterations. They derived a tangent stiffness matrix for the J2 material that is
fully consistent with the backward Euler integration algorithm. Aravas (1987), Lee and Zhang (1991),
Zhang (1995) and Muhlich and Brocks (2003) conducted detailed studies of the backward Euler method
for numerical integration of a class of pressure-dependent plasticity laws and obtained the tangent moduli
by consistent linearization of the elastoplastic constitutive equations.
In recent years, the finite element method has been successfully applied to develop mechanism-based

approaches for predicting failure of ductile materials. The most widely used continuum damage model
for analyzing ductile fracture phenomena is due to Gurson (1977) with the modification by Tvergaard
(1982). The Gurson–Tvergaard (GT) model is an example of the class of pressure-dependent plasticity laws
considered by Aravas (1987) and Lee and Zhang (1991), which provides a constitutive relation for ductile
solids containing spherical voids. The flow potential of the GT model depends on the first and second stress
invariants as well as an additional internal variable, the void volume fraction. When the void volume frac-
tion becomes zero, the GT model reduces to the J2 flow plasticity. Computational approaches based on the
GT model have successfully predicted the behavior of ductile crack growth under a variety of conditions,
e.g., Needleman and Tvergaard (1987), Xia et al. (1995), Ruggieri et al. (1998), and Gao et al. (1998a,b).
However, a distinct limitation of the GT model is the assumption that voids are spherical in materials.
But many processed materials, such as rolled plates, have non-spherical voids. And even for materials hav-
ing initially spherical voids, the voids will change to prolate or oblate shape after deformation, depending
on the state of the applied stress. In order to overcome the limitations of the GT model, Gologanu et al.
(1993, 1994, 1995) derived a yield function for materials containing spheroidal voids. During plastic defor-
mation, both the volume fraction and the shape of voids evolve as deformation increases. Since non-spher-
ical voids are considered in the constitutive model, preferred material orientation exists and the plastic
behavior becomes anisotropic. Unlike the isotropic materials, which have no preferred material orienta-
tions so that the yield functions can be described by the stress invariants, the Gologanu–Leblond–Devaux
(GLD) material has preferred orientation and exhibits anisotropic plastic behavior. Consequently the yield
function of the GLD model is expressed in a complicated form in terms of the stress components. Recently
Pardoen and Hutchinson (2000, 2003) implemented the GLD model in the finite element analysis and their
results show that the computational approach based on the GLD model provides a promising tool to sim-
ulate the ductile fracture process and to predict failure of engineering structures. Due to the complexity of
the constitutive equations of the GLD model, they adopted the conventional continuum tangent stiffness in
their finite element implementation. Such a procedure, however, results in loss of the quadratic rate of
asymptotic convergence particularly important for large time steps. Fracture analysis often deals with large
finite element models and requires efficient numerical algorithms. It is necessary to adopt the backward
Euler method and derive the corresponding consistent tangent stiffness for the GLD model.
Derivation of the consistent tangent moduli becomes difficult when the constitutive equations have com-

plicated forms. In this paper, we present a generalized approach to formulate the consistent tangent stiffness
for plasticity. The derivation will be based on small-strain formulation. For finite strain plasticity, kine-
matic transformations are performed first so that the constitutive equations governing finite deformation
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are formulated using strains–stresses and their rates defined on an unrotated frame of reference. Once the
kinematic transformations have eliminated rotation effects on rates of the tensorial quantities, the
stress updating procedure and the consistent tangent stiffness formulation remain the same as those for
small-strain formulation. This treatment of the finite strain plasticity is adopted by several research and
commercial finite element programs, e.g., ABAQUS. In this case, only small-strain formulation needs to
be considered in development of a user material subroutine. In Section 2 we summarize the general
approach to formulate the consistent tangent moduli for plasticity. The method developed in Section 2
is first applied to develop the consistent tangent stiffness for the isotropic materials with J2 flow plasticity
and the algorithm is implemented to ABAQUS via a user subroutine. The robustness and efficiency of the
proposed approach are examined by comparing the performance and the analysis results with the original
implementation in ABAQUS. Finally the GLD model is implemented using the proposed approach. The
performance comparison between the consistent tangent stiffness and the conventional continuum tangent
stiffness demonstrates the significant improvement in convergence characteristics of the overall Newton
iterations caused by using the consistent tangent matrix.
2. The general method to formulate the consistent tangent matrix

In this section, a general approach to formulate the tangent moduli for plasticity, consistent with the
backward Euler algorithm for the solution of the incremental problem, is presented. The algorithm is based
on small-strain formulation.

2.1. The constitutive equations

Usually a yield function, a flow rule and a set of evolution equations for N state variables are needed to
describe the constitutive relations of a plastic material. The yield function, U, for an anisotropic material
can be expressed as the following general form:
Uðrij;H aÞ ¼ 0; a ¼ 1; . . . ;N : ð1Þ

Here rij are the stress components andHa represents a set of state variables. The subscript a is introduced to
indicate that there may be several state variables including the hardening parameters. When the material
deforms plastically, the inelastic part of the deformation is defined by the flow rule
depij ¼ k
og
orij

; ð2Þ
where g = g (rij,Ha) is the plastic potential, de
p
ij are the differential of the plastic strain components and k is

a positive scalar. In this study, we consider the ‘‘associated flow’’ plasticity model, i.e., U = g. Finally, evo-
lution of the N state variables can be described by
dH a ¼ haðdepij; rij;HbÞ; a ¼ 1; . . . ;N ; b ¼ 1; . . . ;N : ð3Þ
For complex plasticity models, several evolution equations may be defined and the forms of these equations
can be very complicated. Eqs. (1)–(3) define the constitutive model for the plastic material.

2.2. Numerical integration of the plasticity model

The backward Euler method has proven to be stable and accurate for the numerical integration of the
elastoplastic constitutive relations and it is especially efficient when large step size is taken. This makes
it especially attractive when dealing with porous materials. Since the deformation in porous materials is
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usually very large, one has to take large strain increments. Because the focus of this study is to develop the
consistent tangent stiffness matrix, numerical integration of the rate constitutive equations will be described
very briefly here. Detailed discussions about the backward Euler method can be found in Aravas (1987).
For the strain driven integration algorithm, which is commonly adopted in the finite element analysis,

the total strain increment is known for the new increment. During the constitutive calculations, the stresses
and state variables are known at the start of each increment and their values need to be updated at the end
of the increment corresponding to the total strain increment. The elasticity equations give
ðrijÞtþDt ¼ MijklðeeklÞ
tþDt ¼ Mijkl ðeeklÞ

t þ Dekl � Depkl
� �

¼ rTij �MijklDepkl; ð4Þ
where
rTij ¼ Mijkl ðeeklÞ
t þ Dekl

� �
ð5Þ
is the elastic predictor, t represents the time at the start of the increment, t + Dt represents the time at the
end of the increment, and the superscripts e and p denote elastic and plastic components respectively. The
total strain increment Dekl is known, and if the linear elastic behavior is isotropic, the elastic moduli Mijkl

can be expressed as
Mijkl ¼ Gðdikdjl þ dildjkÞ þ K � 2
3
G

� �
dijdkl; ð6Þ
where G and K are the elastic shear and bulk moduli respectively, and dij is the Kronecker delta. In Eqs. (4)
and (5) and hereafter, the summation convention is used for Latin and Greek indices unless otherwise
indicated.
Substituting Eq. (2) into Eq. (4) leads to
ðrijÞtþDt ¼ rTij � kMijkl
oU
orkl

� �tþDt

ð7Þ
Eqs. (1), (3) and (7) consist of N + 7 independent equations and have N + 7 unknowns, i.e., six stress com-
ponents, N state variables and k. The non-linear equations can be solved iteratively by using the Newton–
Raphson method.

2.3. The consistent tangent stiffness matrix

In the implicit finite element method, the equilibrium equations are written at the end of the increment,
resulting a set of non-linear equations for the nodal unknowns. If a full Newton scheme is used to solve
these non-linear equations, one needs to calculate the linearization moduli
J ijkl ¼
orij
oekl

� �tþDt

: ð8Þ
Simo and Taylor (1985) showed that use of the consistent tangent moduli significantly improves the con-
vergence characteristics of the overall equilibrium iterations. The so-called elastoplastic tangent derived
from the ‘‘continuum’’ rate equations by enforcement of the consistency condition will destroy the qua-
dratic convergence of the Newton–Raphson method. The consistent tangent stiffness corresponding to
the backward Euler integration can be obtained by linearization of Eq. (4). Since all quantities in calculat-
ing Jijkl are referred to time t + Dt, the superscript t + Dt will be dropped hereafter.
Conventionally the consistent tangent stiffness matrix is obtained as follows. First, Eq. (4) can be rewrit-

ten as
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rij ¼ Mijkle
e
kl ¼ Mijklðekl � epklÞ ¼ Mijkl ekl � ðepklÞ

t � Depkl
� �

: ð9Þ
Next, substitute Eq. (2) into Eq. (9) and differentiate the resulting equation
orij ¼ Mijkloekl � okMijkl
oU
orkl

� kMijkl
o2U

orklormn
ormn: ð10Þ
To obtain the tangent stiffness, ok needs to be evaluated. However, evaluation of ok becomes difficult when
the derivatives of state variables (oHa) have complex forms in terms of orij and oeij. For this reason, we
choose another way to derive the consistent tangent stiffness.
By directly differentiating Eq. (9), we can get
orij ¼ Mijkloekl �Mijkloe
p
kl: ð11Þ
From the above equation, if we can find the relations between oepij and orij (or oeij), the consistent tangent
stiffness matrix can be achieved. From Eq. (3) we can obtain
oHb ¼ Cab
oha

orij
orij þ

oha

oðDepijÞ
oðDepijÞ

 !
; ð12Þ
where Cab is defined as
C�1
ab ¼ dab �

oha

oHb
: ð13Þ
To find the relations between oepij and orij, we start by taking the differentiation of the yield function
dU ¼ oU
orij

orij þ
oU
oHb

oHb ¼ 0: ð14Þ
Substituting Eq. (12) into Eq. (14) gives
dU ¼ oU
orij

orij þ Cab
oU
oHb

oha

orij
orij þ Cab

oU
oHb

oha

oðDepijÞ
oðDepijÞ ¼ 0 ð15Þ
or
Cab
oU
oHb

oha

o Depij
� � o Depij

� �
¼ � oU

orij
þ Cab

oU
oHb

oha

orij

� �
orij: ð16Þ
This gives only one equation. In order to find the relationships between the increments of stress components
and the increments of the plastic strain components, eight more equations are needed.
Aravas (1987) introduced two scalar strain variables
Dep ¼ �k
oU
op

;Deq ¼ k
oU
oq
with p and q representing the hydrostatic stress and the equivalent stress, respectively. Eliminating k results
in
Dep
oU
oq

� �
þ Deq

oU
op

� �
¼ 0:
The two scalar strain variables introduced by Aravas have also adopted by several other authors, e.g., Lee
and Zhang (1991), Zhang (1995) and Muhlich and Brocks (2003), for numerical integration of a class of
pressure-dependent plasticity laws.
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The same concept is employed here. The eight remaining equations needed to determine the relationships
between the increments of stress components and the increments of the plastic strain components can be
obtained by rearranging Eq. (2) as
Dep11
oU
or11

	 
 ¼ Dep21
oU
or21

	 
 ¼ Dep31
oU
or31

	 
 ¼ Dep12
oU
or12

	 
 ¼ Dep22
oU
or22

	 
 ¼ � � � ¼ Dep33
oU
or33

	 
 ¼ k: ð17Þ
If one of the non-zero components of oU/orij is chosen as reference, one can obtain eight independent equa-
tions from (17). Here we assume that oU/or225 0 and the eight equations resulted from Eq. (17) are as
follows:
W1 ¼
oU
or22

� �
Dep11 �

oU
or11

� �
Dep22 ¼ 0;

W2 ¼
oU
or22

� �
Dep21 �

oU
or21

� �
Dep22 ¼ 0;

..

.

W8 ¼
oU
or22

� �
Dep33 �

oU
or33

� �
Dep22 ¼ 0:

ð18Þ
By differentiating equation W1 we can get
dW1 ¼
oU
or22

� �
o Dep11ð Þ þ Dep11

o2U
or22orij

orij þ
o2U

or22oHb
oHb

� �
� oU

or11

� �
o Dep22ð Þ

� Dep22
o2U

or11orij
orij þ

o2U
or11oHb

oHb

� �
¼ 0: ð19Þ
Substituting Eq. (12) into Eq. (19) and rearranging the terms result in
oU
or22

� �
o Dep11ð Þ � oU

or11

� �
o Dep22ð Þ þ Cab Dep11

o2U
or22oHb

� Dep22
o2U

or11oHb

� �
oha

o Depij
� � o Depij

� �

¼ Dep22
o2U

or11orij
� Dep11

o2U
or22orij

þ Cab Dep22
o2U

or11oHb
� Dep11

o2U
or22oHb

� �
oha

orij

� �
orij: ð20Þ
Similarly, we can obtain the remaining seven equations by differentiating equations W2–W8. Combining the
eight equations obtained above and Eq. (16), the relationships between oepij and orij can be determined and
therefore the consistent tangent stiffness can be derived from Eq. (11).
For the convenience of the finite element implementation, we will derive the consistent tangent stiffness

in matrix form. The boldface symbols will be used to denote vectors and matrices. The following matrix
products will be used in the equations:
ðAdÞi ¼ Aijdj;

ðABÞij ¼ AikBkj:
The nine equations between oepij and orij obtained above can be summarized as
Ko Depð Þ ¼ Dor; ð21Þ
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where Dep ¼ Dep11;Dep21;Dep31; . . . ;DeP33
� �T

; r ¼ r11; r21; r31; . . . ; r33f gT, K is the coefficient matrix of o(Dep)
and D is the coefficient matrix of or. Construction of the K and D matrices are demonstrated in Section 3.
From Eqs. (21) and (11) we can obtain
o Depð Þ ¼ KþDMð Þ�1DM oeð Þ; ð22Þ

whereM is a 9 · 9 matrix representing the elasticity tensorMijkl. Substituting Eq. (22) into Eq. (11) leads to
or ¼ M�M KþDMð Þ�1DM
	 


oeð Þ: ð23Þ
Therefore, the consistent tangent stiffness matrix corresponding to the backward Euler integration scheme
can be obtained as
J ¼ or
oe

� �tþDt

¼ M�M KþDMð Þ�1DM: ð24Þ
Several comments can be made about the consistent tangent stiffness matrix derived above. (1) The pro-
cedure for deriving the consistent tangent stiffness is general and can be applied to formulate the consistent
tangent stiffness matrix for plasticity models which can be described by Eqs. (1)–(3). (2) The J matrix is
usually non-symmetric. It becomes symmetric when the material obeys the J2 plasticity theory (Section
3). But for other plasticity models, e.g., the GLD model (see Section 4), J can be non-symmetric. If the
deformation of the material is small, the non-symmetric contributions are insignificant compared to the
symmetric contributions and a symmetric linear solver can be used to solve the structural equations. How-
ever, when the deformation becomes large, a non-symmetric solver should be used. (3) A matrix inversion
operation is required to obtain the J matrix. For very large deformations, the matrix K + DM could be-
come ill-conditioned. Therefore, a robust and efficient numerical algorithm for matrix inversion should
be employed. (4) The J matrix is derived based on all nine components of the stress and strain increments
in this paper. In the actual implementation, reduced 6 · 6 matrices ofM, K, D can be considered resulting a
6 · 6 J matrix because of the symmetries of the Cauchy stress and infinitesimal strain tensors. This reduces
the computation time. (5) Evaluation of the J matrix becomes straightforward after matrices K and D are
established. Calculation of the K and D matrices requires evaluation of the following derivatives
oU
orij

;
oU
oHb

;
o
2U

orijorkl
;

o
2U

orijoHb
;
oha

orij
;

oha

o Depij
� � ; oha

oHb
: ð25Þ
3. Application to the J2 plasticity model

To assess the algorithm developed in Section 2, we apply it to the J2 plasticity model with isotropic hard-
ening and compare it with the algorithm employed by ABAQUS.

3.1. Constitutive equations for J2 plasticity

The yield function for J2 plasticity can be expressed as
U ¼ re � �r ¼ 0 ð26Þ

where re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2ÞSijSij

p
is the equivalent stress, Sij is the stress deviator and �r is the current yield stress of

the material. An evolution equation can be formulated using equivalent plastic work expression as
�rD�ep ¼ rijDepij; ð27Þ



110 J. Kim, X. Gao / International Journal of Solids and Structures 42 (2005) 103–122
where D�ep is the equivalent plastic strain. If the variation of the yield stress with respect to the equivalent
plastic strain is defined by the hardening function as
�h ¼ D�r
D�ep

: ð28Þ
Eq. (27) can be rewritten as
D�r ¼
�hrijDepij

�r
: ð29Þ
Eq. (29) has the same form as Eq. (3). Eqs. (26), (2) and (29) provide the constitutive equations for the J2
flow plasticity theory.

3.2. Consistent tangent matrix for J2 plasticity

Since the J2 plasticity model has only one evolution equation, i.e., a = 1 and H 1 ¼ �r , an explicit form of
Eq. (12) can be obtained as
o�r ¼
�h�rDepij

�r2 þ �hrmnDepmn
orij þ

�h�rrij
�r2 þ �hrmnDepmn

o Depij
� �

: ð30Þ
By taking the differentiation of Eq. (26), we can get
dU ¼ 3
2

Sij
re

orij � o�r ¼ 0: ð31Þ
Substituting Eq. (30) into Eq. (31) leads to
�h�rrij
�r2 þ �hrmnDepmn

o Depij
� �

¼ 3

2

Sij
re

�
�h�rDepij

�r2 þ �hrmnDepmn

� �
orij ð32Þ
The remaining eight equations for determination of the relationships between oepij and orij are as follows:
oU
or22

� �
o Dep11ð Þ � oU

or11

� �
o Dep22ð Þ ¼ Dep22

o2U
or11orij

� Dep11
o2U

or22orij

� �
orij;

oU
or22

� �
o Dep21ð Þ � oU

or21

� �
o Dep22ð Þ ¼ Dep22

o2U
or21orij

� Dep21
o2U

or22orij

� �
orij;

..

.

oU
or22

� �
o Dep33ð Þ � oU

or33

� �
o Dep22ð Þ ¼ Dep22

o
2U

or33orij
� Dep33

o
2U

or22orij

� �
orij:

ð33Þ
Here for the illustration purpose, it is assumed that oU/or225 0 and the 22-component is used as reference
to formulate the eight equations in Eq. (33). In the actual implementation, the reference component is cho-
sen based on the value of oU/orij. The ij-component will be chosen as the reference component if oU/orij is
maximum at the integration point.
For the J2 plasticity model
oU
orij

¼ 3
2

Sij
re

o2U
orijormn

¼ 3

2re
dimdjn �

dijdmn
3

� �
� 9
4

SijSmn
r3e

ð34Þ
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and the K matrix in Eq. (21) can be obtained as
Fig. 1.
k1S22 0 0 0 �k1S11 0 0 0 0

0 k1S22 0 0 �k1S21 0 0 0 0

0 0 k1S22 0 �k1S31 0 0 0 0

0 0 0 k1S22 �k1S12 0 0 0 0

k2r11 k2r21 k2r31 k2r12 k2r22 k2r32 k2r13 k2r23 k2r33
0 0 0 0 �k1S32 k1S22 0 0 0

0 0 0 0 �k1S13 0 k1S22 0 0

0 0 0 0 �k1S23 0 0 k1S22 0

0 0 0 0 �k1S33 0 0 0 k1S22

2
66666666666666664

3
77777777777777775

; ð35Þ
where
k1 ¼
3

2re
; k2 ¼

�h�r
�r2 þ �hrmn:Depmn

: ð36Þ
The fifth row of the K matrix corresponds to Eq. (32) and the rest eight rows correspond to the equations
given by Eq. (33). This arrangement ensures the diagonal elements of the K matrix to be non-zero. The D
matrix can be constructed in a similar way.
It is noted that the coefficients of Eq. (32) often have much larger values than the coefficients of Eq. (33).

To improve the conditions of the K and D matrices, a scaling factor is multiplied to both sides of (32), i.e.,
the elements in the fifth row of the K and Dmatrices are reduced by the same scaling factor. After the K and
D matrices are established, the consistent tangent stiffness matrix J can be easily obtained.
We have implemented above procedure to ABAQUS via a user subroutine. We tested the algorithm by

analyzing a cubic block containing a spherical hole at its center as shown in Fig. 1(a). This kind of model is
often used in micromechanics study of the void growth behavior in ductile solids. Displacement boundary
conditions are prescribed on the outer surfaces of the cube. The displacement components are specified on
the faces of the block incrementally using the procedure developed by Faleskog et al. (1998) such that the
macroscopic stress ratios remain constant during the loading history. Due to symmetry, a one-eighth sym-
metric model is employed, which contains 384 28-node, isoparametric, brick elements with reduced integra-
tion. Fig. 1(b) shows the deformed shape of the model. From this analysis, we found that the consistent
(a) The one-eighth symmetric finite element mesh of a cube containing a centered spherical hole and (b) the deformed shape.
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tangent stiffness matrices computed using our user subroutine are exactly the same as those computed using
the algorithm originally implemented in ABAQUS during the entire loading history, which verifies our pro-
posed method. The algorithm developed in this paper requires inverting the matrix K + DM, and therefore
takes more CPU time. However, our numerical tests show that this increase of the CPU time is insignifi-
cant––it is less than 10%.
In ABAQUS the consistent tangent moduli for J2 plasticity is derived following the conventional algo-

rithm which requires evaluation of ok. As discussed in Section 2, it is difficult to extend this approach to
plasticity models with oHa having complex forms in terms of orij and oeij. Our new approach provides a
simple and efficient algorithm to formulate consistent tangent moduli for complex plasticity models.
4. Application to the GLD porous plasticity model

In this section, the algorithm developed in Section 2 is applied to derive the consistent tangent moduli for
an anisotropic porous plasticity model, the GLD model, which demonstrates the effectiveness of the pro-
posed algorithm in handling complex plasticity models.

4.1. Constitutive equations of the GLD plasticity model

The GLD porous plasticity model (Gologanu et al., 1993, 1994, 1995) provides the constitutive equa-
tions for development of the mechanism-based approaches to predict structure failure by ductile fracture
(Pardoen and Hutchinson, 2000, 2003). The GLD model describes the macroscopic plastic response of
ductile solids containing spheroidal voids. Because the void shape is not spherically symmetric, preferred
orientations exist in the material and the plastic behavior becomes anisotropic.
Consequently, the yield function cannot be described by the stress invariants. Instead, the yield function

has a complicated form involving the stress components.
Fig. 2 shows the geometrical representation of a representative material volume containing a spheroidal

void (axisymmetric): (a) prolate void and (b) oblate void. The void is axisymmetric about the y-axis and the
aspect ratio is W = Ry1/Rx1. The yield function of the void-containing material can be expressed as
F

U ¼ C
�r2

R0 þ gRhXk k2 þ 2qðg þ 1Þðg þ f Þ cosh j
Rh
�r

� �
� ðg þ 1Þ2 � q2ðg þ f Þ2 ¼ 0; ð37Þ
(a) (b)

x

Rx1

R
y1

Rx2

R
y2

y

Rx1

Rx2

R
y1

R
y2

y

x

ig. 2. Geometrical representation of a representative material volume: (a) prolate void shape and (b) oblate void shape.
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where Rij are the macroscopic stress components, f represents the void volume fraction, S is the shape
parameter defined as S = ln(W) , and �r is the yield stress of the matrix material. In Eq. (37), kk denotes
the von Mises norm, R 0 is the deviatoric stress tensor, Rh is the generalized hydrostatic stress defined by
Rh = a2 (Rxx + Rzz) + (1 � a2)Ryy, X is a tensor defined as X = (2/3)ey � ey � (1/3)ex � ex � (1/3)ez � ez,
where (ex,ey,ez) is an orthogonal basis with ey parallel to the axisymmetric axis of the void, and �denotes
tensor product. The parameters C, g, g, k and a2 as described in Appendix A, are functions of f and S, and
the heuristic parameter q depends on initial void volume fraction, strain hardening exponent of the matrix
material, S and the macroscopic stress triaxiality factor T. Detailed descriptions about the GLD model can
be found in Pardoen and Hutchinson (2000, 2003) and Gologanu et al. (2001).
In the GLD model, it is assume that the macroscopic plastic strain increments (DEpij) follow the flow rule

expressed as
DEpij ¼ k
oU
oRij

ð38Þ
Three evolution equations corresponding to state variables f, �r, and S are needed in the GLD model.
From the plastic incompressibility of the matrix material, the change of the void volume fraction due to
void growth can be expressed as
df ¼ ð1� f ÞdEpkk: ð39Þ
Enforcing equality between the rates of macroscopic and matrix plastic work allows for computation of
�r using the effective stress–strain curve for the matrix material
�rd�epð1� f Þ ¼ RijdE
p
ij: ð40Þ
The evolution equation for void shape can be expressed as (Gologanu et al., 1993, 1994)
dS ¼ ð3=2Þn1dEpijX ij þ n2dE
p
kk; ð41Þ
where n1 and n2 are described in Appendix A.
The three evolution equations can be expressed in the form of Eq. (3) as
Df ¼ h1 ¼ 1� fð ÞDEpkk; ð42aÞ

D�r ¼ h2 ¼
�hRijdE

p
ij

�rð1� f Þ ; ð42bÞ

DS ¼ h3 ¼ 3=2ð Þn1DEpijX ij þ n2DE
p
kk ð42cÞ
The rotation of the principal axis of the void is not considered here.
4.2. Consistent tangent stiffness matrix

The backward Euler method provides an accurate and stable algorithm for the numerical integration of
the GLD model. But due to the complexity of the constitutive equations, it is not easy to derive the con-
sistent tangent stiffness following the procedure by Simo and Taylor (1985). Here we use the general ap-
proach presented in Section 2 to formulate the consistent tangent stiffness matrix. The matrices K and D
are needed to evaluate the consistent tangent matrix J. To obtain these matrices, the following derivatives

are required: oU
oRij

; oU
of ;

oU
o�r ;

oU
oS ;

o2U
oRijoRkl

; o2U
oRijof

; o2U
oRijo�r

; o2U
oRijoS

; oha
oRij

; oha
o DEijð Þ ;

oha
of ;

oha
o�r , and

oha
oS , where a = 1,2,3.

These derivatives are given in Appendix B.



114 J. Kim, X. Gao / International Journal of Solids and Structures 42 (2005) 103–122
It is worthwhile to mention that the consistent tangent stiffness matrix J derived for the GLD model is
non-symmetric. Therefore, a non-symmetric solver should be used for solving the structural equations,
especially when deformation in the material becomes large.

4.3. Numerical tests

The numerical procedure described above has been implemented in ABAQUS via a user subroutine and
tested by performing analyses of several test problems.

4.3.1. Round tensile bar

The first numerical test is conducted by analyzing necking of a round tensile bar. The 1/8-symmetric fi-
nite element mesh shown in Fig. 3(a) consists of 1122 eight-node, 3D linear brick elements hybrid with con-
stant pressure (C3D8H in the element library of ABAQUS). A geometric imperfection is used to initiate
necking at the middle of the specimen, Rd/R0 = 0.995, where R0 is the initial radius of the bar and Rd is
the radius of the mid-section. The ratio of the initial length (L0) to the initial diameter of the round bar
is 4.0. Displacement boundary conditions are applied at the end of the specimen. The total axial displace-
ment (uy = 0.25L0) is applied incrementally. The matrix material is characterized by a power-law hardening
stress–strain relation with E/r0 = 207, m = 0.3, and N = 0.12, where E is the Young�s modulus, r0 is the ini-
tial yield stress, m is the Poisson�s ratio and N is the strain-hardening exponent. The GLD model is used to
describe the macroscopic plastic behavior of the material. In the first case, the voids are assumed to have
a prolate shape (W = 4) initially and in the second case, the initial void shape is assumed to be oblate
(W = 1/4). The initial void volume fraction for both cases is taken to be f0 = 0.01.
Fig. 3(b) is the deformed shape of the tensile bar containing prolate voids showing necking occurs at the

mid-section. Fig. 4 compares the engineering stress–strain curves for the two cases. Here F represents the
axial load carried by the bar. The maximum load is reached at a strain value of about 0.13 (engineering
strain ey = uy/L0). The load–elongation behavior of the bar is almost the same for both cases. The specimen
containing prolate voids has a little higher ultimate strength than the specimen containing oblate voids.
This kind of behavior agrees with the experimental observations by Benzerga (2000). Fig. 5 compares
the radial displacements (ur) at the mid-section of the specimen and that at the end-section of the specimen
Fig. 3. (a) The 1/8-symmetric finite element mesh for analyzing necking of a round tensile bar and (b) deformed shape at uy = 0.25L0.
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for the prolate void case. Before uy/L0 reaches 0.13, uniform elongation occurs in the specimen. After uy/L0
reaches 0.13, the radial displacement increases rapidly around the center-length area (mid-section) of the
specimen but stops changing away from the mid-section. This indicates necking of the specimen.
To demonstrate the effectiveness of the consistent tangent stiffness, the same analysis is conducted using

the conventional continuum tangent moduli derived from the ‘‘continuum’’ rate equations by enforcement
of the consistency condition. Derivation of the continuum tangent stiffness for the GLD model is straight-
forward (Pardoen, 2003) and the result is given in Appendix C. Fig. 6 compares the number of iterations
needed to apply the same displacement increment using the consistent tangent stiffness matrix and using the
continuum tangent stiffness matrix in the finite element analysis. When the deformation is small, using the
consistent tangent stiffness does not lead to a noticeable reduction of the number of iterations. However,
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when the deformation becomes large, the advantage of using the consistent tangent stiffness is obvious. It
significantly reduces the number of iterations needed to apply the same amount of displacement increment.
Although the overall load–elongation curves for the specimen containing prolate voids and the specimen

containing oblate are almost the same, the void growth behavior in the two specimens is quite different. Fig.
7(a) compares the void growth rate at the center of the specimen for both cases. The oblate voids grow
much faster than the prolate voids. Fig. 7(b) shows how the void aspect ratio evolves as the deformation
increases. Since the load is applied in the axial direction, the initially oblate voids will change to prolate
voids when ey � 0.20.

4.3.2. Non-uniform deformation

For the cubic material volume containing a hole considered in Section 3, the material near the hole expe-
riences much larger deformation than the material away from the hole. To demonstrate the robustness of
the consistent tangent stiffness derived for the GLD model, the finite element model shown in Fig. 1 is



Fig. 8. (a) Deformed shape of the model and (b) comparison of the predicted variation of the lateral displacement vs. the vertical
displacement curves between the J2 material and the GLD material.
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reconsidered, where length of the half-edge L0. The boundary conditions are described in Section 3.2. Here
it is assumed that the material behavior is governed by the GLD model with f0 = 0.001 andW = 2. Fig. 8(a)
shows the deformed shape of block, where the element around the hole experience very large deformation.
Fig. 8(b) shows the variation of the lateral displacement (ux) of the face perpendicular to the x-axis with the
vertical displacement (uy) of the top face. At the beginning, the block contracts laterally as the vertical dis-
placement increases. The predicted ux vs. uy curves are almost the same using the J2 plasticity model and
using the GLD model. But for the GLD material, when uy/L0 reaches about 0.95, the lateral displacement
stops changing, suggesting plastic flow localization in the ligament and onset of internal necking. This
example shows that the consistent tangent stiffness derived using the proposed method has no problem
dealing with non-uniform deformation and very large deformation.
5. Conclusion

In this paper, we present a general method to formulate the consistent tangent stiffness matrix for plas-
ticity. The robustness and efficiency of the proposed approach are examined by applying it to the isotropic
material with J2 flow plasticity and comparing the performance and the analysis results with the original
implementation in ABAQUS. The proposed approach is then applied to an anisotropic porous plasticity
model. The performance comparison between the consistent tangent stiffness and the conventional contin-
uum tangent stiffness demonstrates the significant improvement in convergence characteristics of the overall
Newton iterations caused by using the consistent tangent matrix. Since all the stress components are used as
calculation variables in the derivation of tangent stiffness matrix, the proposed method provides a general
approach to formulate the consistent tangent moduli for the any plastic constitutive models given by Eqs.
(1)–(3). The advantage of the proposed method becomes effective when complex plasticity models are dealt
with.



118 J. Kim, X. Gao / International Journal of Solids and Structures 42 (2005) 103–122
Acknowledgment

This research was made possible through research funding provided by the Office of Naval Research
(N00014-02-1-0423). Discussions with Prof. Pardoen of the Catholic University of Louvain (Belgium)
are acknowledged.
Appendix A

The GLD model is derived from a material volume of spheroidal shape containing a confocal spheroidal
void (Fig. 2). The void can be either prolate (will be referred to by the symbol ‘‘P’’) or oblate (will

be referred to by the symbol ‘‘O’’). Because of confocality, there exists a relationship
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2x1 � R2y1j

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jR2x2 � R2y2j
q

¼ c , where c is the focal distance. The eccentricities of the inner and outer spheroidal shapes

are e1 = c/Ry1 (P) or c/Rx1 (O), e2 = c/Ry2 (P) or c/Rx2 (O). These eccentricities are related to f and
S by
1� e21 ¼ expð�2jSjÞ;
f
1�e2

2

e3
2

¼ 1�e2
1

e3
1

ðPÞ;

f
ffiffiffiffiffiffiffi
1�e2

2

p
e3
2

¼
ffiffiffiffiffiffiffi
1�e2

1

p
e3
1

ðOÞ:

8><
>: ðA:1Þ
The g, j, a2, g and C are expressed by
g ¼
0 ðPÞ;
e3
2ffiffiffiffiffiffiffi
1�e2

2

p ðOÞ;

8<
: ðA:2Þ

j�1 ¼

1ffiffi
3

p þ 1
lnðf Þ ð
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p
� 2Þ ln e1
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C ¼ � jðg þ 1Þðg þ f Þsh
gðQþ gHÞ ; ðA:5Þ
where
sh ¼ sinhðjHÞ; ch ¼ coshðjHÞ; H ¼ 2ða1 � a2Þ; Q ¼ 1� f ; ðA:6Þ
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1

� 1�e2
1
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The n1 and n2 are given by
n1 ¼ 1þ
9

2
nT ð1�

ffiffiffi
f

p
Þ a1 � a0

1

1� 3a1
; ðA:8Þ

n2 ¼
1� 3a1
f

þ 3a1 � 1; ðA:9Þ
where
a0
1 ¼

1
3�e2

1

ðPÞ;
1�e2

1

3�e2
1

ðOÞ;

8<
: ðA:10Þ

nT ¼ 1� 0:5T ; ðA:11Þ

T ¼ ð2Rxx þ RyyÞ
3jRyy � Rxxj

: ðA:12Þ
Appendix B

Derivatives needed to formulate the consistent tangent stiffness for the GLD porous plasticity model
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Derivatives related to evolution Eqs. (42a)–(42c)
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Appendix C

The conventional continuum tangent stiffness matrix for the GLD model
drij ¼ Mijkl �
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